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RNA requires metal ions to help form and maintain its active 123458 ,é
structure and also to carry out the wide range of functions it serves S-GACAGGG™ A»
in all biological systems, including catalysi$s RNA folds into S'EHE"’!HEE&AN
its native structure, preformédnetal binding motifs that remain
partially exposed may facilitate subsequent formation of more o o o
complex tertiary structure through additional interactions. Some N NH ;quNH NH
preformed sites contain a guanine N7 along with one or two 1 o HG | | A
precisely positioned phosphates that chelatéNgth high affinity, h|' N" NH, T NH, '}' °
while others may contain no phosphates yet still participate in RNA 1 2 3
folding through transient lower-affinity interactions. Although the Figure 1. A labeled hairpin containing G&U pairs that models the P5b
biologically abundant yet spectroscopically silent ions2Mgnd stem loop of the self-splicingetrahymenagroup | intron with [83%C-7-

15N]-guanosine 2) at G6 in the binding motif, [2N]-guanosine 1) at

K* have been identified in crystal structufe$, their specific G16 outside it, and [3N]-uridine (3) at U13.

binding has been difficult to detect in solution.

5N NMR of *N-labeled nucleosides and nucleic acids is a e R e
nonperturbing method that is particularly sensitive to protona- £ 240 @6 Co(NH ) ** .
tion, metal interactions, and hydrogen bondingor example, a gm 4
~70 ppm upfield change occurs for the N1 of adenosine upon -E 26 L ¥ - WG16 Co(NH ) ™ i
protonatior? a 20 ppm upfield change occurs for the N7 of FET) A . 2OER. v
guanosine upon addition of Zh or Hg?",° and smaller upfield O op | NI oM G16 Zn* .
changes of a few ppm occur upon formation of specific hydrogen § 230 — G6 zn™ J
bonds by purine N1 or N7 atoms in oligonucleotide duplexes and : 208 - ﬁG‘ﬁ Cd” |
triplexes?0 2 e 6 Cd™ , ,

We have recently reported the use'eM NMR to evaluate and ZEquivaIe‘nts of Metal °

compare the relative binding abilities of several metals f\a ) ) ) .

e . Figure 2. Plots of N chemical shift for the labeled RNA hairpin as a
specifically labeled RNA duplex designed to model a part of the ¢ 201 of added Co(NB2+, Mg?+, Zm?*, and Cd+.
hammerhead ribozymié.The duplex contained a GAG motif Y Y

that creates a high-affinity, preformed metal binding site between = 2p

a specific phosphate and the N7 of an adjacent gudfilfée E

demonstrated that Mg, Zn?", and C@", but not Co(NH)", were 52346

specifically bound. We now report a comparison of metal binding E

at a very different kind of preformed metal binding motif, G o4

pairs, in a hairpin that models the P5b stem loop of the self-splicing 2234_:

Tetrahymenagroup | intronl® We synthesized the same model E

hairpin that Tinocé* had studied several years ago, but witHJ8- =z =

7-15N]-guanosine at G6 in the binding motif, [ZN]-guanosine at .

G16 outside the binding motif, for comparison, and-®]-uridine Equivalents of Metal
at U13 (Figure 1). TheC atom served primarily as a tag to Figure 3. Plots of 5N chemical shift for the labeled RNA hairpin as a

differentiate unambiguously between the tfiN7 NMR signalst® function of added Na and K.

We prepared six identical 3.3 mM samples of the labeled hairpin,
each containing 50 mM NaCl and 20 mM HEPES, titrated them  We also found anonselectie upfield change of~5 ppm upon
with Co(NHe)e3™, Mg?t, Zr?+, C*, Na', and K+, and monitored addition of 3 equiv of C#", anonselectie upfield change of-3
their N resonances at 18. As shown in Figure 2, we observed  ppm upon addition of 3 equiv of 2h, and anonselectie upfield
a 6.3 ppmdownfield'®>N chemical shift change at the G6 N7 upon change of< 1 ppm upon addition of 8 equiv of Mg.16 These
addition of 5 equiv of Co(NHK)*".16 The data show an apparent results are entirely opposite to those we had seen for theAGA
Kq of 520 uM =+ 40. The signal displayed moderate broadening motif, to which zZ#*, Cd#*, and Mg all bound strongly and
with 0.5 equiv, indicative of intermediate exchange between bound selectively!!
and unbound states, but sharpened with additional metal. At the Figure 3 shows the chemical shift changes caused by addition
G16 N7 we observed only a 1.8 ppm downfield change with 5 of Na" and K". The K* data give a curve consistent with selective
equiv and no broadening. This pronounced selective effect for binding to the GGUU motif.1” The apparenkq of 6.3 mM + 1.2
Co(NHs)6** is consistent with the binding to the GQU pairs that reflects a modest affinity for this interaction. The samples all
was seen in both crystdland NMR# structures. contained 126 mM Ng so that we do not have data for small
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amounts of N&, and see only a small linear downfield drift upon that is easily displacel,it fits well into the uniformly negative
addition of more Na&, consistent with the purely electrostatic major groove of the G&JU motif where it can make direct contacts
interaction of diffuse ion$31°The total chemical shift changes with  to the many base electron donors. Our results demonstrate that,
these monovalent ions are of course significantly smaller than for although the GE&JU motif is not a binding site for Mg, it is a
the di- and trivalent ion%’ binding site for the other biologically abundant metal ion,. K

The N chemical shift of a solvated N7 is known to move  acynowledgment. This work was supported by a grant from
moderately upfield with formation of hydrogen bonds that are (EB002809).
stronger than those to solvent water, downfield for those that
are weaker, and downfield with the purely electrostatic effects
seen with N&.1° The selective downfield change we observe for
Co(NHe)e®" is therefore consistent with a combination of the strong
electrostatic effect of trivalent Gb and hydrogen bonding to the
N7 that is weaker with amine ligands than with solvent water.
Thus, among the metals we have studied dinectionof chemical
shift change is a consequence of each metal's properties, while therReferences

Supporting Information Available: Experimental methods, partial
15N NMR spectra, tables PN NMR chemical shifts for the labeled
hairpin and [7**N]-guanosine, 2D HSQC spectf& NMR spectra after
metal titration, and anion exchange HPLC chromatograms after metal
titration. This material is available free of charge via the Internet at
http://pubs.acs.org.
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